

June 2022 As of July 20, 2022 Page 1 of 5

Ensure Financial Stability	
Reconciled Bank Account Balances	Refer to attached Reconciled Bank Account Balances as of 6/30/2022.
Monthly Financial Statements	Provided separately to Board of Directors.
Monthly Financial Dashboard	Provided separately to Board of Directors.
AP Check Reconciliation Register	Provided separately to Board of Directors.
Capital Improvement Projects for Drinking	Provided separately to Board of Directors.
Water	
Capital Improvement Projects for	Provided separately to Board of Directors.
Wastewater	
Grant Management	Refer to attached Grant Management Report.

Ensure Revenues are Consistent with Sy	ystem Usage
Water Shut-offs	There were 41 water shut-offs for non-payment, 22 were turned back on after payment, and 60 service shut-off requests.
Repair/Replace Meters/MXUs/Batteries	Drinking Water Distribution staff replaced 21 water meters, replaced 34 batteries, and 24 MXUs.
Reduce Wet Weather Impacts to Infrast	ructure, Community, and Receiving Waters
Negotiate with PADEP/U.S. EPA/DOJ on	CRW and USDOJ/U.S. EPA/PADEP are finalizing the Draft Partial Consent Decree Modification for public comment.
Past and Future Practices	
Develop Necessary Planning for	No Update.
Implementation of Green Infrastructure	
Joint Pollutant Reduction Plan -	The Paxton Creek Cooperative (CRW, Lower Paxton Township, and Susquehanna Township) meet monthly to coordinate the implementation of our Joint Pollution Reduction
Collaborate with Suburban Partners on	Plan (PRP). We are continuing to advance our partnership with PennDOT to increase the pounds of sediment reduction on the Paxton Creek Sediment Reduction project
MS4	contract. PennDOT has issued a second Invitation for Bid for the Paxton Creek Sediment Reduction Project and is awarding the contract (See Issue Brief).
Obtain and Comply with Individual MS4	No update.
Permit	

Operate Facilities with a High Sta	andard of Care					
Permit Compliance	The Drinking Water department met all primary and secondary Safe Drinking Water Act permit parameters for the month.					
	AWTF met all required NPDES monthly permit parameters in June. Three Dry Weather Overflows were reported. Details are contained in the Wastewater Department					
	Monthly Report for June.					
Notice of Violations (NOVs)	There were no NOVs received by the Drinking Water department in June.					
	There were no NOVs received by the Wastewater department in June.					
Preventative Maintenance	The Drinking Water Maintenance group conducted all scheduled preventative maintenance for the month to the water treatment plant equipment. Specific facility					
	maintenance activities are outlined within the Drinking Water Department Monthly Report for June.					
	The Wastewater department completed all regularly scheduled preventative maintenance in the month of June. A final semi-annual PM for CSO regulator #048 was also					
	completed.					
CCTV	A total of 3,430 feet (0.65 miles) of sewer pipe were assessed by CCTV footage during the month of June. A total of 831 feet (0.16 miles) of pipe were flushed as well. Phase 6					
	CCTV has started, but data was not yet available at the time of this report.					

June 2022 As of July 20, 2022 Page 2 of 5

Incident Response	Wastewater responded to 18 backup and overflow calls from residents during the month of June. CRW was liable for none.
Geographic Information System (GIS)	 Twenty-four (24) Pennsylvania One Call tickets were completed by GIS. Twenty-two (22) tickets needed maps created and one (1) had no CRW utilities in the map area. GIS Manager participated in the PWEA Operations Challenge in State College. GIS staff attended the 2022 PA GIS Conference in State College. GIS is collaborating with Asset Management (AM) on the Lead and Copper Rule Revisions (LCRR) - lead service line inventory. Updates to the "City Beautiful H20 GSI Tour" web app and the "CRW GeoHUB" were completed.
Cityworks	
Asset Management	Task Order 2022-04-02 Asset Management Quick Win Activites are in progress and on schedule. The final section for the Strategic Asset Management Plan (SAMP) is under review including various business process workflows. Meetings held on 6/22/2022 and 6/24/2022 to discuss prioritization of the next phase of roadmap activities. Front Street pumping station assets have been labeled with barcodes. Asset Management team is collaborating on several organizational initiatives, including material management/inventory, Lead Copper Rule Revisions (LCRR) - lead service line inventory and AWWA benchmarking initiatives.
Development Review Summary	For details, see attached Development Stormwater Management Review Summary spreadsheet for July.

Undertake Capital Improvement Project	ts - Refer to attached Capital Improvement Projects Report						
Professional & Contractor Services	Recommend Board approval of the following Task Orders, Change Orders, Agreements and Procurement:						
	Drinking Water: Procurement of large Sensus meters						
	Wastewater: Professional Services Agreement for Gauge Adjusted Radar Rainfall (GARR) Procurement of Roof Replacement for the Spring Creek Pump Station Procurement of Gorman-Rupp Horizontal Centrifugal Sewage Pump Stormwater: Resolution No. 2022–016 Joint Pollutant Reduction Plan – Intergovernmental Cooperation Agreement – Task Order 2022-01 – Contribution to PennDOT						
	Phase 4 PENNVEST SW Pro-Fi Project – Recommendation to Reject Bids						
Stormwater O&M Agreements	Recommend Board approval of the following: None.						
AWTF Primary Digesters Rehabilitation	Startup and testing of Digester No. 1 began the week of 7/11/2022. The contractor will be requesting Substantial Completion by the end of July.						
AWTF Energy Recovery Improvements	Permit applications are being reviewed by Swatara Township and PADEP.						
Front Street Pumping Station Improvements	The contractors are addressing punch list items and site cleanup.						
WSC Flocculator Equipment Replacement	Delivery of flocculator equipment is expected in October 2022.						

June 2022 As of July 20, 2022 Page 3 of 5

Undertake Renewal and Replacement P	rojects
2020 Sewer System Improvements	Punch list items and final paving remains.
2021 Sewer System Improvements	The contract was terminated on 5/25/2022. Final payment and project closeout will occur in July.
2021 Water System Improvements	The contractor has remaining work at the 6th and Wallace Street location and is performing final paving.
2022 Water System Improvements	The preconstruction meeting is scheduled for 7/26/2022.
Cameron Street Water Main - Phase 3	Final paving is complete and punch list items remain.
Arsenal Boulevard Sewer Improvements	Temporary and construction easements must be acquired before advertising the project.
Front Street Interceptor Rehabilitation -	The preconstruction meeting will be scheduled at the end of July.
Phase 2	
Water Facility Maintenance	Drinking Water Maintenance staff performed repairs to various process units as described in the Drinking Water Department Monthly Report.
Wastewater Facility Maintenance	The Wastewater Maintenance group completed various repairs throughout the AWTF and pumping stations throughout the month of June. A narrative is provided in the
	Wastewater Department Monthly Report.
Sinkhole Program	Twelve (12) sinkholes were investigated by CRW in the month of June. None were due to failure of CRW assets.
Inlet Cleaning	A total of 209 stormwater inlets were cleaned during the month of June, and 202 stormwater inlet inspections were performed.

Operate as an Efficient, Sustainab	le and Resilient Water Utility							
DeHart Property Stewardship	Timber harvest to improve regeneration is nearing completion in Management Unit (MU) 22/31 in accordance with the DeHart Property Forest Management F							
	inspection will be scheduled.							
	Notice to proceed was provided to All Terrain Logging, LLC for a regeneration harvest in MUs 20, 34, 36, and 37 (approximately 155 acres); haul road improvements are							
	complete and harvest equipment is on site.							
Sustainability	No update.							
Internal Communications	The Intranet site and calendar continue to be utilized. Management employees completed DISC assessments.							

Inform and Listen to Customers and En	courage Stewardship of our Systems
Media Relations - Press and Social Media	
	SOCIAL MEDIA TOPICS: Facebook: 5 New Organic Followers (1,501 Total). 11 Posts; Highest Engaged Post: (6/30/2022). "Employee of the Month - Tom York." (615 Reach, 95 Reactions, 61 Comments, 3 Shares, 85 Link Clicks); Other topics: Stormwater Week (5 posts) and BWA Advisory & Lift.
	Twitter: 3 Tweets; Highest Engaged Tweet: "BWA" (783 Impressions; 0 Likes, 0 Retweets) Month overview: 1,290 total Impressions; 1,099 Profile Visits; -5 New Followers; 2 Mentions.
	Instagram: 5 New followers (667 Total), 11 Posts; Highest Engaged Post: Highest Engaged Post: (6/30/2022) "Employee of the Month - Tom York." 63 Organic Reach, 8 likes, 1 comment.
	2022 Demographics: Most Active Age-range: 25-54; Gender division: 62% Women / 37% Men; Locations: Harrisburg, Penbrook, Mechanicsburg, Steelton, Linglestown, Camp Hill and Lancaster.

June 2022 As of July 20, 2022 Page 4 of 5

Community Ambassador Meeting held 6/15/2022: Cancelled due to CSO signage installations and vacations.							
Community Outreach:							
Delivered 55 door-to-door notifications re: water service interruptions, sewer line repairs, sewer maintenance, and boil water advisory and lifts.							
• Eight (8) Everbridge alerts for past due balances, hydrant flushing, sewer lining, and water service interruptions.							
• Two (2) boil water advisories and lifts. Twenty (20) customers notified with two (2) confirmed.							
Daily combined sewer overflow (CSO) inspections and Everbridge customer updates.							
Three (3) community meetings/presentations.							
CSO signage installation, (1) DeHart tour, Consumer Confidence Report (CCR) deliveries, and three (3) in-person customer complaint follow-ups.							
WHAT'S ON TAP COMMUNICATION: The June monthly bill stuffer was distributed as a bill insert. Topics included: M/W/DBE 5-Year Review: Business Diversity Program & CSO installation plan.							
The Business Diversity Program finalized the 5-Year Business Diversity Program Report and presented to the Board at the 6/22/2022 monthly Board meeting. On 6/28/2022,							
the Business Diversity Program was presented at the PA Downtown Conference on the Diversity, Equity and Inclusion (DE&I) panel for the purpose of expanding the conversation around M/W/DBE businesses in construction.							

Administrative	
Risk Management	No update.
Human Resources	Recruiting: Refer to Recruiting Status Report attached.
Procurement	Ongoing projects include:
	• First phase of inventory has been extended until 7/31/2022 to build more usable data (due to COVID).
Information Technologies (IT)	

June 2022 As of July 20, 2022 Page 5 of 5

Office Management and	Incoming Correspondence Report: Refer to attached Incoming Correspondence Report for June 2022.
Admin Professional Services and	and the second s
Construction	Street/Sidewalk-Cut Permits: Four (4) Drinking Water and eight (8) Sewer permits were successfully completed, inspected, and closed by the City of Harrisburg's Engineer. One (1) new Drinking Water and one (1) Sewer permits were issued.
	Fleet Management: During June, all vehicle/equipment data was transitioned into Cityworks. OMG group has provided all historical information from Cityworks' database to the Finance department for tracking of fixed assets received relative to the Transition Agreement between the City of Harrisburg and The Harrisburg Authority (now known as Capital Region Water) effective 11/4/2013. C-92 - CRW accepted delivery - 2022 Ford F-250 Super Duty Truck from Hoffman Ford on 7/8/2022. (CRW is awaiting delivery of utility body upfit for C-92 from Stephenson/MJR Equipment - expected in Oct 2022) for the Drinking Water department (previously approved on 2/23/22). C-93 - CRW accepted delivery - 2022 Ford F-250 Super Duty Truck from Hoffman Ford on 7/8/2022. (CRW is awaiting delivery of utility body upfit for C-93 from Stephenson/MJR Equipment - expected in Oct 2022) for the Drinking Water department (previously approved on 2/23/22). G-78 - CRW will accept delivery - 2022 Ford F-250 4X4 Super Duty Regular Cab from Fred Beans Ford and U.S. Municipal on 7/21/2022.
Right-to-Know Requests	Recommend Board approval of the following: • None. CRW has received and responded to two Right-to-Know requests during the period 6/16/2022 through 7/20/2022. Other informational requests were identified as not being formal RTK requests throughout the month and/or were transferred to the Customer Service Center for appropriate response.
	OOR Training: The Open-Records Officer participated in the following webinars conducted by the Office of Open Records (OOR) during the past month: • None
	2022-009 - Sisto Campana (AFSCME - Washington DC) Labor advocate for the American Federation of State, County and Municipal Employees performing a wage survey for one of our affiliates in Pennsylvania who work for a different wastewater treatment facility. Requesting non-personal wage and job description information of Capital Region Water positions similar to five job descriptions: (1) Sewer Maintenance Person; (2) Utility Person; (3) Waste Water Reuse Plant Operator; (4) Compost Operator; and (5) Inspector. As an example, if Capital Region Water doesn't have a job titled "Sewer Maintenance Person" but has a position that has duties, experience and qualifications that are similar to the attached "Sewer Maintenance Person" description, I would like to have information for that Capital Region Water position. This goes for all of the positions listed above. The information I am looking for from Capital Region Water would include the minimum wages and maximum wages, the job description, the experiences and qualifications needed for that position and the job title Capital Region Water uses. Response due: 6/13/2022. Response provided 6/9/2022 for 30-day extension until 7/13/2022. Final Response provided: 6/29/2022.
	2022-010 - Bret P. Shaffer, Esq. (Schiffman Sheridan & Brown, P.C.) Any bill/statement prepared/sent for services of CRW for/to any properties on the following segments of North 3rd Street, Harrisburg: between and including 1600 through 1646 North 3rd Street on the riverside (west) of North 3rd Street, and between and including 1601 through 1639 North 3rd on the opposite side (east) of North 3rd Street. Response due: 7/05/2022. Response provided: 6/29/2022 for 30-day extension until 8/4/2022. Final Response pending.
	2022-011 - Brianna Dinmore (Conrad O'Brien PC) Response due: 7/25/2022. Response provided: 7/22/2022 for 30-day extension until 8/24/2022. Final Response pending.

DRINKING WATER DEPARTMENT MONTHLY REPORT

Newly upgraded sludge pump at Water Services Center.

June 2022

100 Pine Drive, Harrisburg, PA 17103 | 888-510-0606 capitalregionwater.com

Drinking Water Department Monthly Report

June 2022

Plant Operations

The Capital Region Water (CRW) Drinking Water department met all Federal Safe Drinking Water Act water quality standards for the month of June. Specific water quality results are summarized in Exhibit A. A total of 237.4 MG, averaging 7.91 MGD was withdrawn from the water supply source for treatment. As shown in Exhibit B, a total of 233.2 MG, averaging 7.77 MGD, of finished drinking water was pumped to the distribution system.

The DeHart water source was in service 30 days. The Susquehanna River water source was not in service. The DeHart Watershed had above average rainfall in June (Exhibit C) and the DeHart reservoir water level increased (Exhibit D). An estimated 340.6 MG of water was released from DeHart reservoir to Clark Creek, averaging 11.3 MGD for the month. This downstream flow, which is received by remote flow monitoring from the weir location and actual staff gauge readings, was in compliance with the flow required by the State Water Allocation Permit (Exhibit E).

The installation of soda ash feeder 804 was completed, and the new unit is operational. We will be running this unit for several weeks to verify that it is working properly. Once the operation of the unit is confirmed, we will be issued a permit of operation from PADEP. Sludge pump 607 was also replaced with a new pump and variable frequency drive (VFD). This unit replaced a unit that had lost its pumping capacity over the years, and with the addition of the new VFD, it will allow more flow control for the operators.

Plant Maintenance

The Maintenance team performed approximately 37 preventative maintenance work orders and one corrective maintenance work order for the month of June using the Cityworks maintenance management system for all water treatment plant equipment, pumping stations and fleet vehicles and NFS offices.

- The DeHart Dam watershed was patrolled daily and maintained.
- The Maintenance team repaired the existing blower for the HVAC unit in the Filter building.
- The Maintenance team repaired several leaks on the Operation and Maintenance buildings.
- The Maintenance team continues to support the requests and work orders for the NFS offices.
- The Maintenance team continues to cut grass and perform other landscaping duties at the Water Services Center, Pump Houses, DeHart Dam Facility and NFS offices.
- The Maintenance team repaired the heaters at the Reservoir Park Pumping Station.
- The Maintenance team continues to maintain the distribution and maintenance fleet vehicles and equipment.

Drinking Water Department Monthly Report

June 2022

Distribution

The Distribution group, while keeping up with the COVID-19 pandemic safety requirements, managed to:

- Repair one water main break during the month totaling 88,843 gallons of unmetered water for the month of June.
- Repair six leaking services during the month totaling 466,560 gallons of unmetered water for the month of June.
- Repair three fire hydrants.
- CRW flushed 537 fire hydrants in June.
- Completed 342 work orders.
- Completed 513 water, sewer, and storm water locates.
- Continue leak detection daily.
- Work with contractors on several water, sewer, and storm water capital improvement projects.

Water Quality

In addition to overseeing the operation of both the accredited and process laboratories, the Water Quality Administrator also:

- Ensured collection of regulatory samples for total coliform and E. coli.
- Began collection of tri-annual lead and copper samples.

Drinking Water Exhibits

EXHIBIT A Water Quality Anaylsis - 2022

Total Coliform: Presence/Absence Distribution System A	1.98 1.55 1.32 1.55 1.32 1.55 1.32 1.55 1.32 1.33 1.34 1.34 1.35 1.35 1.35 1.35 1.35 1.35 1.35 1.35	1.97 32 1.30 51 0.72 A NA 0.04 0.03 3 6.3 A NA 5 7.6 6 7.6 5 5 A NA 6 15	A 1.94 1.18 0.67 NA 0.03 6.0 NA 7.6 7.7 5 NA 17	1.90 1.17 0.69 NA 0.04 5.8 NA 7.6 7.4				1.96 1.26 0.64 N/A 0.04	5% P 0.2 - 4.0 <0.02 NA NA 0.30
Chlorine Residual, mg/L Free Filter Plant Effluent 1.94 2.0 Distribution System 1.27 1.3 Turbidity, NTU Influent from DeHart 0.57 0.5 Influent from DeHart 0.04 0.0 PH, Std Units Influent from DeHart 6.4 6.3 Influent from DeHart 6.4 6.4 Influent From Susquehanna NA N. Pilter Plant Effluent 7.4 7.4 Distribution System 7.6 7.7 Total Alkalinity, mg/L as CaCO3 Influent Form Susquehanna NA N. Filter Plant Effluent 13 18 13 18 Distribution System 15	1.98 1.5 1.32 1.5 0.61 1.3 0.04 1.3 0.0	1.97 32 1.30 51 0.72 A NA 0.04 0.03 3 6.3 A NA 5 7.6 6 7.6 5 5 A NA 6 15	1.94 1.18 0.67 NA 0.03 6.0 NA 7.6 7.7	1.90 1.17 0.69 NA 0.04 5.8 NA 7.6 7.4				1.26 0.64 N/A 0.04	0.2 - 4.0 <0.02 NA NA 0.30
Chlorine Residual, mg/L Free Filter Plant Effluent 1.94 2.0 Distribution System 1.27 1.3 Turbidity, NTU Influent from DeHart 0.57 0.5 Influent from DeHart 0.04 0.0 PH, Std Units Influent from DeHart 6.4 6.3 Influent from DeHart 6.4 6.4 Influent Ffluent Effluent 7.4 7.2 Distribution System 7.6 7.7 Total Alkalinity, mg/L as CaCO3 Influent DeHart 5 5 Influent from Susquehanna NA NA NA Filter Plant Effluent 13 18 18 Distribution System 15 15 15 Temperature, degrees C Influent from DeHart 6.6 6.6 6.6 Influent from Susquehanna NA NA NA Filter Plant Effluent 7.0 6.5 6.5 Influent from DeHart 0.57 0.5 0.5 Influent from DeHart 0.62 0.1 0.1 <	1.32 1.55 0.61 1.4 NA 1.03 0.04 1.3 0.04 1.3 6.3 1.4 NA 1.5 7.5 7 7.6 1.5 NA 1.6 NA 1.6 NA	32 1.30 61 0.72 A NA 04 0.03 3 6.3 A NA 5 7.6 6 7.6 5 A NA 6 15	1.18 0.67 NA 0.03 6.0 NA 7.6 7.7	1.17 0.69 NA 0.04 5.8 NA 7.6 7.4				1.26 0.64 N/A 0.04	<0.02 NA NA 0.30
Filter Plant Effluent	1.32 1.55 0.61 1.4 NA 1.03 0.04 1.3 0.04 1.3 6.3 1.4 NA 1.5 7.5 7 7.6 1.5 NA 1.6 NA 1.6 NA	32 1.30 61 0.72 A NA 04 0.03 3 6.3 A NA 5 7.6 6 7.6 5 A NA 6 15	1.18 0.67 NA 0.03 6.0 NA 7.6 7.7	1.17 0.69 NA 0.04 5.8 NA 7.6 7.4				1.26 0.64 N/A 0.04	<0.02 NA NA 0.30
Distribution System	1.32 1.55 0.61 1.4 NA 1.03 0.04 1.3 0.04 1.3 6.3 1.4 NA 1.5 7.5 7 7.6 1.5 NA 1.6 NA 1.6 NA	32 1.30 61 0.72 A NA 04 0.03 3 6.3 A NA 5 7.6 6 7.6 5 A NA 6 15	1.18 0.67 NA 0.03 6.0 NA 7.6 7.7	1.17 0.69 NA 0.04 5.8 NA 7.6 7.4				1.26 0.64 N/A 0.04	<0.02 NA NA 0.30
Turbidity, NTÚ Influent from DeHart 0.57 0.5 Influent from Susquehanna NA	55 0.61 A NA B 0.02 B 6.3 A NA 5 7.5 7 7.6 S NA B 16	51 0.72 A NA 04 0.03 3 6.3 A NA 5 7.6 6 7.6 5 5 A NA	0.67 NA 0.03 6.0 NA 7.6 7.7	0.69 NA 0.04 5.8 NA 7.6 7.4				0.64 N/A 0.04	NA NA 0.30
Influent from DeHart 0.57 0.5 Influent from Susquehanna NA NA NA NA NA NA NA N	A NA 13 0.04 3 6.3 4 NA 5 7.5 7 7.6 5 A NA 8 16	A NA 04 0.03 3 6.3 A NA 5 7.6 6 7.6 5 A NA 6 15	NA 0.03 6.0 NA 7.6 7.7 5 NA	NA 0.04 5.8 NA 7.6 7.4				N/A 0.04 6.19	NA 0.30
Influent from Susquehanna	A NA 13 0.04 3 6.3 4 NA 5 7.5 7 7.6 5 A NA 8 16	A NA 04 0.03 3 6.3 A NA 5 7.6 6 7.6 5 A NA 6 15	NA 0.03 6.0 NA 7.6 7.7 5 NA	NA 0.04 5.8 NA 7.6 7.4				N/A 0.04 6.19	NA 0.30
Filter Plant Effluent 0.04 0.05	03 0.04 3 6.3 A NA 5 7.5 7 7.6 5 A NA 8 16	04 0.03 3 6.3 A NA 5 7.6 6 7.6 5 A NA 15	0.03 6.0 NA 7.6 7.7	5.8 NA 7.6 7.4				6.19	0.30 NA
PH, Std Units Influent from DeHart 6.4 6.5 Influent from DeHart 7.4 7.4 7.5 Distribution System 7.6 7.5 7.6 7.7 Total Alkalinity, mg/L as CaCO3 Influent Form Susquehanna NA	3 6.3 A NA 5 7.5 7 7.6 5 A NA 3 16	3 6.3 A NA 5 7.6 6 7.6 5 5 A NA 6 15	6.0 NA 7.6 7.7 5 NA	5.8 NA 7.6 7.4				6.19	NA
Influent from DeHart	A NA 5 7.5 7 7.6 5 A NA 3 16	A NA 5 7.6 6 7.6 5 5 A NA 6 15	NA 7.6 7.7 5 NA 17	NA 7.6 7.4 5 NA					
Influent from Susquehanna	A NA 5 7.5 7 7.6 5 A NA 3 16	A NA 5 7.6 6 7.6 5 5 A NA 6 15	NA 7.6 7.7 5 NA 17	NA 7.6 7.4 5 NA					
Filter Plant Effluent 7.4 7.5	5 7.5 7 7.6 5 A NA 3 16	5 7.6 6 7.6 5 5 A NA 6 15	7.6 7.7 5 NA 17	7.6 7.4 5 NA			_		NA
Distribution System 7.6 7.5	7 7.6 5 A NA 3 16	6 7.6 5 5 A NA 6 15	7.7 5 NA 17	7.4 5 NA				7.52	6.5 - 8.5*
Total Alkalinity, mg/L as CaCO3 Influent DeHart	5 A NA 3 16	5 5 A NA 6 15	5 NA 17	5 NA				7.60	6.5 - 8.5*
Influent DeHart	NA NA 16	A NA 6 15	NA 17	NA				7.00	0.5 0.5
Influent from Susquehanna	NA NA 16	A NA 6 15	NA 17	NA	+			5.00	NA
Filter Plant Effluent 13 18 Distribution System 15 17 Temperature, degrees C 16 6.6 6.6 Influent from DeHart 6.6 6.6 6.1 Influent from Susquehanna NA NA NA Filter Plant Effluent 7.0 6.5 6.5 Distribution System 15.3 12 12 Fluoride, mg/L Filter Plant Effluent 0.57 0.5 0.5 Aluminum, mg/L Filter Plant Effluent 0.10 0.2 0.1 10.0 0.2 0.1 10.0 0.2 0.1 10.0 0.2 0.1 0.0 0.2 0.1 0.0 0.2 0.1 0.0 0.0 0.2 0.1 0.0 0.2 0.1 0.0 0	3 16	6 15	17					N/A	NA
Distribution System				19				16.48	<15*
Temperature, degrees C Influent from DeHart 6.6	13	3 10	10	20				16.40	<15*
Influent from DeHart 6.6 6.1 Influent from Susquehanna NA NA NA Filter Plant Effluent 7.0 6.1 Distribution System 15.3 12 Fluoride, mg/L Filter Plant Effluent 0.57 0.5 Aluminum, mg/L Filter Plant Effluent 0.10 0.2 Iron, mg/L Influent from DeHart 0.62 0.1 Influent from Susquehanna NA NA Filter Plant Effluent 0.01 0.0 Distribution System 0.13 0.0 Total Dissolved Solids, mg/L Influent from DeHart 13 13 Influent from Susquehanna NA NA Filter Plant Effluent 37 38 Distribution System 39 46 Total Hardness, mg/L Influent from DeHart 8 8 Influent from Susquehanna NA NA Filter Plant Effluent 8 8 Filter Plant Effluent 1.20 1.1				20				10.40	<13
Influent from Susquehanna	0 7.4	4 9.5	12.2	14.8				9.42	NA
Filter Plant Effluent 7.0 6.1 Distribution System 15.3 12 Filter Plant Effluent 0.57 0.5 Aluminum, mg/L Filter Plant Effluent 0.10 0.2 Iron, mg/L Influent from DeHart 0.62 0.1 Influent from Susquehanna NA NA Filter Plant Effluent 0.01 0.0 Distribution System 0.13 0.0 Total Dissolved Solids, mg/L Influent from Susquehanna NA NA Filter Plant Effluent 37 33 Distribution System 39 40 Total Hardness, mg/L Influent from DeHart 18 8 88 Influent from DeHart 18 8 88 Influent from DeHart 18 8 88 Filter Plant Effluent 8 8 88 Filter Plant Effluent 8 8 88 Filter Plant Effluent 8 8 87 Orthophosphate, mg/L Filter Plant Effluent 1.20 1.1			NA	NA				#DIV/0!	NA NA
Distribution System			12.6	14.1				#DIV/0: 8.15	NA NA
Fluoride, mg/L 6.57 0.0 0.0			17.6	21.9				14.03	NA NA
Filter Plant Effluent 0.57 0.5 Aluminum, mg/L 0.10 0.2 Filter Plant Effluent 0.10 0.2 Iron, mg/L 0.62 0.1 Influent from DeHart 0.62 0.1 Influent from DeHart 0.01 0.0 Distribution System 0.13 0.0 Total Dissolved Solids, mg/L 13 13 Influent from DeHart 13 13 Influent from Susquehanna NA NA Filter Plant Effluent 37 33 Total Hardness, mg/L Influent from DeHart 8 8 Influent from Susquehanna NA NA Filter Plant Effluent 8 8 Distribution System 8 7 Orthophosphate, mg/L Filter Plant Effluent 1.20 1.1	.9 15.5	.5 14.0	17.0	21.9				14.05	INA
Aluminum, mg/L Filter Plant Effluent 0.10 0.2 Iron, mg/L Influent from DeHart 0.62 0.1 Influent from Susquehanna NA NA Filter Plant Effluent 0.01 0.0 Distribution System 0.13 0.0 Total Dissolved Solids, mg/L Influent from DeHart 13 13 Influent from Susquehanna NA NA Filter Plant Effluent 37 38 Distribution System 39 40 Total Hardness, mg/L Influent from DeHart 8 8 8 Influent from Susquehanna NA NA Filter Plant Effluent 8 8 8 Distribution System 8 7 Orthophosphate, mg/L Filter Plant Effluent 1.20 1.1 Filter Plant Effluent 1.20 1.1	8 0.57	57 0.52	0.64	0.55				0.56	2
Filter Plant Effluent 0.10 0.2 Iron, mg/L 0.62 0.1 Influent from DeHart 0.62 0.1 Influent from Susquehanna NA NA Filter Plant Effluent 0.01 0.0 Distribution System 0.13 0.0 Total Dissolved Solids, mg/L Influent from DeHart 13 13 Influent from Susquehanna NA NA Filter Plant Effluent 37 38 Total Hardness, mg/L 1nfluent from DeHart 8 8 Influent from Susquehanna NA NA Filter Plant Effluent 8 8 Distribution System 8 7 Orthophosphate, mg/L Filter Plant Effluent 1.20 1.1	0.57	0.32	0.04	0.55				0.56	
Iron, mg/L Influent from DeHart 0.62 0.1 Influent from Susquehanna NA NA NA NA NA NA NA N	2 0.23	23 0.03	0.03	0.03				0.15	0.2*
Influent from DeHart 0.62 0.1	.2 0.23	23 0.03	0.03	0.03				0.15	0.2*
Influent from Susquehanna	2 0.40	10 0.07	0.00	0.11			_	0.22	214
Filter Plant Effluent 0.01 0.0 Distribution System 0.13 0.0 Total Dissolved Solids, mg/L Influent from DeHart 13 13 Influent from Susquehanna NA NA Filter Plant Effluent 37 38 Distribution System 39 40 Total Hardness, mg/L Influent from DeHart 8 8 Influent from Susquehanna NA NA Filter Plant Effluent 8 8 Orthophosphate, mg/L 8 7 Orthophosphate, mg/L 1.20 1.1			0.08	0.11				0.23	NA
Distribution System			NA	NA 0.04				N/A	NA 2.24
Total Dissolved Solids, mg/L 13 13 Influent from DeHart 13 13 Influent from Susquehanna NA NV Filter Plant Effluent 37 38 Distribution System 39 40 Total Hardness, mg/L Influent from DeHart 8 8 Influent from Susquehanna NA NV Filter Plant Effluent 8 8 Distribution System 8 7 Orthophosphate, mg/L Filter Plant Effluent 1.20 1.1			0.02	0.01				0.01	0.3*
Influent from DeHart	0.03	0.00	0.01	0.02				0.03	0.3*
Influent from Susquehanna									
Filter Plant Effluent 37 36 Distribution System 39 40 Total Hardness, mg/L Influent from DeHart 8 8 Influent from Susquehanna NA NA Filter Plant Effluent 8 8 Distribution System 8 7 Orthophosphate, mg/L Filter Plant Effluent 1.20 1.1			16	16				14.70	NA
Distribution System 39 40			NA	NA				N/A	NA
Total Hardness, mg/L Influent from DeHart 8 8 Influent from Susquehanna NA NA Filter Plant Effluent 8 8 Distribution System 8 7 Orthophosphate, mg/L Filter Plant Effluent 1.20 1.1			46	47				42.00	500*
Influent from DeHart 8 8 Influent from Susquehanna NA N/ Filter Plant Effluent 8 8 Distribution System 8 7 Orthophosphate, mg/L Filter Plant Effluent 1.20 1.1	38	8 45	46	49				43.07	500*
Influent from Susquehanna									
Filter Plant Effluent 8 8 Distribution System 8 7 Orthophosphate, mg/L 5 1.20 1.1 Filter Plant Effluent 1.20 1.1 1.20 1.1			8	8				8.00	NA
Distribution System 8 7 Orthophosphate, mg/L 3 7 Filter Plant Effluent 1.20 1.1			NA	NA				N/A	NA
Orthophosphate, mg/L Filter Plant Effluent 1.20 1.1	A NA		8	8				8.02	NA
Filter Plant Effluent 1.20 1.1	A NA	7 6	5	7				6.67	NA
	A NA								
Distribution System 1.23 1.1	A NA 8 7		1.36	1.32				1.27	0.7 - 1.3*
	NA NA 8 7 1.40		1.31	1.33				1.24	0.7 - 1.3*
**Total Trihalomethanes, ug/L	NA NA 8 7 1.40								
Distribution System 0.035 N/	NA NA 8 7 1.40 4 NA	A 1.18	NA	NA				0.04	0.080
**Total Haloacetic Acids, ug/L	NA NA 8 7 1.40 4 NA	A 1.18							
Distribution System 0.033 NA	A NA 8 7 5 1.40 4 NA	A 1.18 A 0.041		NA				0.03	0.060
Total Organic Carbon, mg/L	A NA 8 7 5 1.40 4 NA	A 1.18 A 0.041	NA						
Influent from DeHart 3.00 N	A NA 8 7 5 1.4(4 NA A NA	A 1.18 A 0.041 A 0.037						2.70	NA
Influent from Susquehanna NA NA	A NA 8 7 5 1.4(4 NA A NA	A 1.18 A 0.041 A 0.037		NA				N/A	NA
Filter Plant Effluent 1.50 N	A NA NA A NA NA NA NA	A 1.18 A 0.041 A 0.037 A 2.40	NA	NA NA			1		NA
Average Filter Run, Hours 114 11	4 NA 8 7 1.40 4 NA A NA A NA A NA A NA	A 1.18 A 0.041 A 0.037 A 2.40 A NA	NA NA					1.40	INA

^{*} Values are related to DEP Secondary MCL
** Running Annual Quarterly Average

EXHIBIT B

Water Production Data - 2022

	DeHart Wi	ithdrawal	River Wit	:hdrawal	Total Wit	hdrawal	Treated	Water	Process	Water	Finished	l Water
Month	Total (MG)	Average (MGD)										
January	230.675	7.441	0.000	0.000	230.675	7.441	235.985	7.612	4.634	0.149	228.344	7.366
February	230.134	8.219	0.000	0.000	230.134	8.219	233.393	8.335	5.266	0.188	224.570	8.020
March	225.723	7.282	0.000	0.000	225.723	7.282	233.913	7.546	6.770	0.218	223.545	7.211
April	212.629	7.088	0.000	0.000	212.629	7.088	218.666	2.289	6.006	0.201	209.256	6.975
May	231.932	7.482	0.000	0.000	231.932	7.482	239.807	7.735	6.563	0.212	230.430	7.433
June	237.403	7.913	0.000	0.000	237.403	7.913	242.242	8.075	6.000	0.200	233.202	7.773
July												
August												
September												
October												
November												
December												
Total	1368.496		0.000		1368.496		1404.006		35.239		1349.347	
Average	228.083	7.571	0.000	0.000	228.083	7.571	234.001	6.932	5.873	0.195	224.891	7.463

Peak Day Water Use 5/31/2020 6.966 (MG) = Million Gallons
Minimum Day Water Use 5/1/2020 6.081 (MGD) = Million Gallons per Day

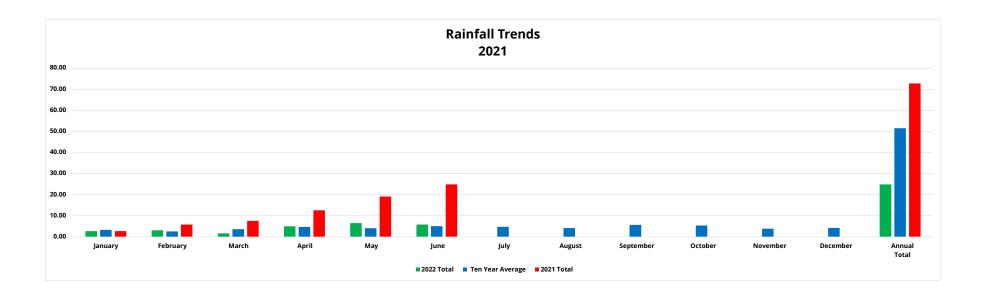
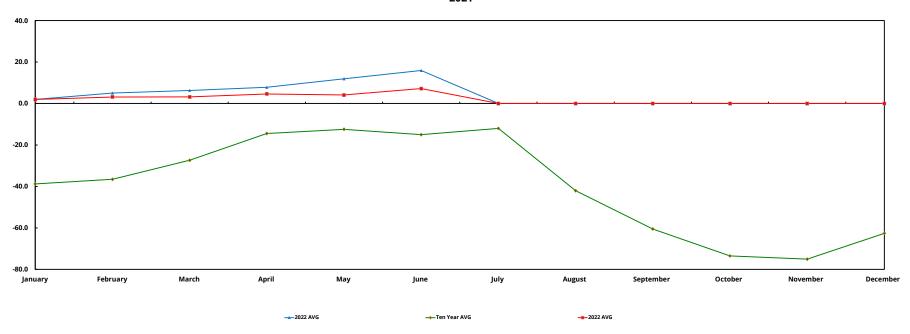


EXHIBIT C

Rainfall at the DeHart Reservoir - 2022

(inches)

Date	January	February	March	April	May	June	July	August	September	October	November	December	Annual Total
2022 Total	2.74	3.14	1.67	5.03	6.55	5.84	0.00	0.00	0.00	0.00	0.00	0.00	24.97
Daily Average	0.080	0.113	0.150	0.168	0.211	0.195	0.000	0.000	0.000	0.000	0.000	0.000	0.917
Ten Year Average	3.37	2.572	3.62	4.68	4.138	5.112	4.81	4.154	5.72	5.37	3.83	4.21	51.586
2021 Total	2.74	5.88	7.55	12.58	19.13	24.97	0.00	0.00	0.00	0.00	0.00	0.00	72.85


EXHIBIT D

Water Level at the DeHart Reservoir - 2022

(Inches from Spillway)

Date	January	February	March	April	May	June	July	August	September	October	November	December
2022 AVG	1.9	3.1	3.2	4.6	4.1	7.2	0.0	0.0	0.0	0.0	0.0	0.0
Ten Year AVG	-38.8	-36.6	-27.4	-14.4	-12.5	-15.0	-12.0	-42.0	-60.5	-73.5	-75.0	-62.6
2022 AVG	1.9	5.0	6.3	7.8	11.9	15.9	0.0	0.0	0.0	0.0	0.0	0.0

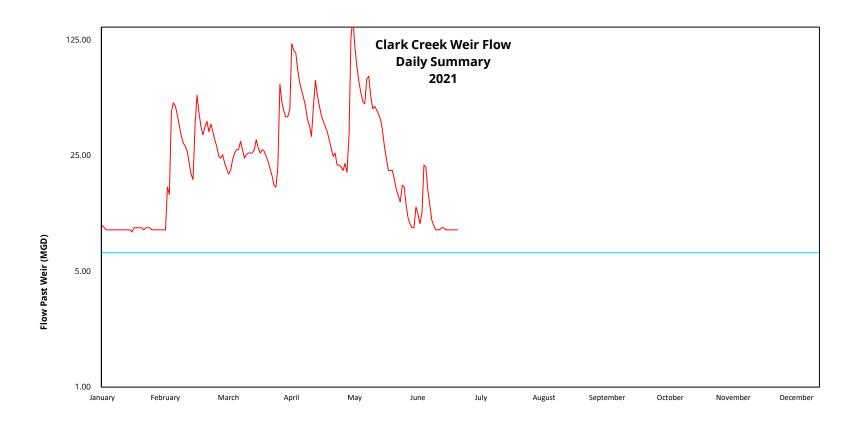

DeHart Reservoir Water Level Trends 2021

EXHIBIT E

Daily Conservation Release - 2022

----Series1

Minimum Allowable Flow

EXHIBIT F

Utility Usage - 2022

Location / Utility	January	February	March	April	May	June	July	August	September	October	November	December	Average	Total
ter Services Center														
ctric Transmission														
Total, kwH	196.200	136.800	145.800	181.800									165.150	660,600
Cost, Dollars	\$12,915.36	\$8,967.54	\$8,888.73	\$11,610.27									\$10,595.48	\$42,381.90
ectric Generation		10,100.00	10,000	4,									***************************************	7 1.2,00 1.12
Total, kwH	196,200	136,800	145,800	181.800									165,150	660,600
Cost. Dollars	\$1,323,23	\$1,339,10	\$1,303,79	\$1,352.63									\$1,329,69	\$5,318.75
ntural Gas	41,525.25	\$1,555.10	\$1,503.73	\$1,55£.05									¥1,525.05	45,510.75
Total, Cu Ft	14.898	11,450											13.174	26,348
Cost, Dollars	\$12,296.76	\$9,486.52											\$10,891.64	\$21,783.2
wer													,	. ,
Total, Gal	7.710.000	6.560,000											7,135,000	14,270,00
Cost, Dollars	\$65,997,60	\$56,152.60											\$61,075.10	\$122,150.2
fuse													,	
Cost, Dollars	\$509.60	\$509.60	\$509.60	\$509.60	\$509.60	\$509.60	\$509.60	\$509.60	\$509.60	\$509.60	\$509.60	\$509.60	\$509.60	\$6,115.20
servoir Park Pump Station														
ctric Transmission														
Total, kwH	84.800	84,800	81.600	82,400									83.400	333,600
Cost, Dollars	\$3,943.58	\$3,917.06	\$3,362.56	\$3,547.63									\$3,692.71	\$14,770.8
ectric Generation													,	,
Total, kwH	84,800	84,800	81,600										83,733	251,200
Cost, Dollars	\$1,074.71	\$1,134.00	\$1,168.51										\$1,125.74	\$3,377.22
ntural Gas													.,	
Total, Cu Ft	823	523											673	1,346
Cost, Dollars	\$696.50	\$451.99											\$574.25	\$1,148.49
squehanna River Pump Station	100000	7.0												***************************************
ectric Transmission														
Total, kwH	1.800	1,200	1.800		600								1,350	5,400
Cost, Dollars	\$77.70	\$14.63	\$84.89		\$7.58								\$46.20	\$184.80
ectric Generation														
Total, kwH	1,800	1,200	1,800	600	600								1,200	6,000
Cost, Dollars	\$75.67	\$74.18	\$71.63	\$69.05	\$68.85								\$71.88	\$359.38
atural Gas														
Total, Cu Ft	724	641											683	1,365
Cost, Dollars	\$615.82	\$548.16											\$581.99	\$1,163.98
nion Square Booster Station														
ectric Transmission														
Total, kwH	2876	3,875	2,888	2,309									2,987	9,072
Cost, Dollars	152.42	\$312.67	\$150.83	\$127.58									\$185.88	\$591.08
ectric Generation														
Total, kwH	2876	3,875	2,888	2,309									2,987	9,072
Cost, Dollars	125.54	\$127.11	\$162.09	\$120.18									\$133.73	\$409.38
Hart Facilities														
ectric Transmission														
Total, kwH	2,965	2,845	2,728	2,470	2,209								2,643	13,217
Cost, Dollars	\$224.15		\$203.55	\$199.31	\$190.46								\$204.37	\$817.47
ectric Generation														
Total, kwH	2,965	2,845	2,728	2,499	2,209								2,649	13,246
Cost, Dollars	\$101.22	\$96.85	\$97.06	\$90.42	\$151.19								\$107.35	\$536.74
el Oil														
Total, Gals.		1	1,438			1						1	1,438	1,438
Cost, Dollars		1	\$8,077.31			1							\$8,077.31	\$8,077.31
ty Island Heat Trace		·				·	<u> </u>	·	<u> </u>					
ectric Transmission														
Total, kwH	390	378	356		258								346	1,382
Cost, Dollars	\$23.33	\$20.65	\$19.97		\$11.81	1							\$18.94	\$75.76
ectric Generation	423.33	120.03	4.3.37											475.70
	390	378	356										375	1,124
Total kwH														
Total, kwH Cost, Dollars	\$65.29	\$65.27	\$64.99										\$65.18	\$195.55

^{**} Not available at time report was developed

Total Transmission	\$58,822
Total Generation	\$10,197
Total Refuse	\$6,115
Total Gas	\$24,096
Total Sewer	\$122,150
Total Fuel Oil	\$8,077
Total Utilities	\$223,342

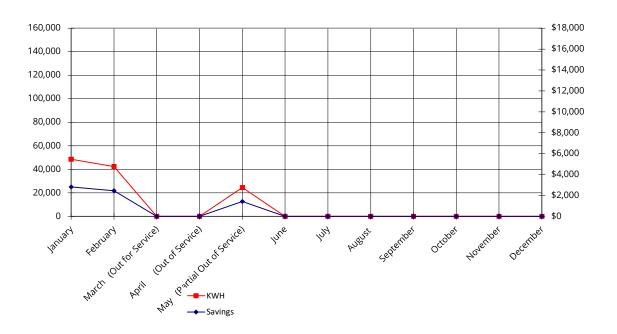


Exhibit G

Hydro-Turbine Generator Performance - 2022

Month	Kilowatt-hour (KWH)	Anticipated Savings *
January	48,590	\$2,818
February	42,322	\$2,455
March (Out for Service)	0	\$0
April (Out of Service)	0	\$0
May (Partial Out of Service)	24,528	\$1,423
June	0	\$0
July	0	\$0
August	0	\$0
September	0	\$0
October	0	\$0
November	0	\$0
December	0	\$0
Average	45,456	\$2,636
Year to Date	115,440	\$6,696

^{*} Estimated savings based on electrical rate of \$0.058 per KWH

EXHIBIT H

Treatment Chemical Usage - 2022

Chemical	January	February	March	April	Мау	June	July	August	September	October	November	December	Average	Total
Chlorine														
Total Lbs.	6,180	6,133	6,135	5,736	6,296	6,356							6,139	36,836
Average, Chlorine Lbs./Day	199	219	198	191	203	212							203.7	
Average, Chlorine Dose, mg/L	3.2	3.2	3.2	3.2	3.2	3.2							3.2	
Chlorine, Cost, \$/Lbs.	\$0.305	\$0.305	\$0.305	\$0.305	\$0.305	\$0.305							0.3	
Chlorine Total Cost, Dollars	\$1,885	\$1,871	\$1,871	\$1,749	\$1,919	\$1,939							\$1,872.32	\$11,233.90
Alum 48.5%														
Total Lbs.	48,096	46,683	42,713	38,071	38,686	37,906							42,026	252,155
Average, Alum, Lbs./Day	1,551	1,667	1,378	1,269	1,248	1,264							1396.2	
Average, Alum, mg/L	25.0	25.0	18.3	18.8	20.0	16.5							20.6	
Alum Cost, \$/Lbs.	\$0.164	\$0.164	\$0.164	\$0.164	\$0.164	\$0.164							0.2	
Alum Total Cost, Dollars	\$7,888	\$7,656	\$7,005	\$6,244	\$6,345	\$6,217							\$6,892.46	\$41,354.74
Lime														
Total Lbs.	0	0	0	0	0	0							0	0
Average Lime, Lbs./Day	0	0	0	0	0	0							0.0	
Average, Lime Dose, mg/L	0.0	0.0	0.0	0.0	0.0	0.0							0.0	
Lime Cost, \$/Lbs.	\$0.00		\$0.00	\$0.00	\$0.00	\$0.00							\$0.00	
Lime Total Cost, Dollars	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00							\$0.00	\$0.00
Soda Ash	0	0	0	0										
Total Lbs.	24,800	25,750	25,400	26,250	31,650	32,700							27,758	166,550
Average Soda Ash, Lbs./Day	800	920	819	875	1,021	1,090							920.8	100,330
Average, Soda Ash Dose, mg/L	16.7	16.7	16.2	16.9	17.7	17.9							17.0	
Soda Ash Cost, \$/Lbs.	\$0.299	\$0.299	\$0.299	\$0.299	\$0.299	\$0.299							0.3	£40.700.20
Soda Ash Total Cost, Dollars	\$7,415	\$7,699	\$7,595	\$7,849	\$9,463	\$9,777							\$8,299.70	\$49,798.20
Fluoride Total Lbs.	1,155	1,193	1,168	1,111	1,202	1,215							1,174	7,044
	37	43	38	37		41							39.2	7,044
Average, Fluoride Lbs./Day	0.6		0.6		39								0.6	
Average, Fluoride (F-) Dose, mg/L		0.6		0.6	0.6	0.6								
Fluoride Cost, \$/Lbs.	\$0.48 \$554	\$0.48 \$573	\$0.48	\$0.48 \$533	\$0.48 \$577	\$0.48 \$583							\$0.48 \$563.57	\$3,381.40
Fluoride Total Cost, Dollars	\$554	\$3/3	\$561	\$333	\$5//	\$ 565							\$303.57	\$3,361.40
Sodium Hydroxide 50%														
Total NaOH 50% dry Lbs.	41,600	36,660	38,202	36,068	41,385	42,323							39,373	236,238
Average NaOH 50%, dry Lbs./Day	1,342	1,309	1,232	1,202	1,335	1,411							1,305	
Average, NaOH 50%, mg/L	10.7	10.7	9.8	9.9	10.4	9.0							10.1	
NaOH 50% Cost, dry \$/Lbs	\$0.174	\$0.174	\$0.174	\$0.174	\$0.174	\$0.174							0.2	
NaOH 50% Total Cost, Dollars	\$7,238	\$6,379	\$6,647	\$6,276	\$720	\$7,364							\$5,770.73	\$34,624.40
Zinc Orthophosphate														
Total Zn3(PO4)2, wet Lbs.	5,142	5,057	5,034	4,712	5,189	5,251							5,064	30,385
Average Zn3(PO4)2, wet Lbs./Day	166	181	162	157	167	175							168.0	
Average, Zn3(PO4)2 Dose, mg/L	2.7	2.7	2.7	2.7	2.7	2.7							2.7	
Zn3(PO4)2 Cost, wet \$/Lbs.	\$0.374	\$0.374	\$0.374	\$0.374	\$0.374	\$0.374							0.4	
Zn3(PO4)2 Total Cost, Dollars	\$1,923	\$1,891	\$1,883	\$1,762	\$1,941	\$1,964							\$1,894.02	\$11,364.11
Potassium Permanganate														
Total KMnO4, Lbs.													#DIV/0!	0
Average KMnO4, Lbs./Day													#DIV/0!	
Average, KMnO4 Dose, mg/L													#DIV/0!	
KMnO4 Cost, \$/Lbs.													#DIV/0!	
KMnO4 Total Cost, Dollars													#DIV/0!	\$0.00
Expenditure													#DIV/0!	\$151,756.75
Average Treated Cost per (MG)													#DIV/0!	#DIV/0
Total Treated Flow (MGD)													#DIV/0!	0.000
	i l	1							1		1		ı	234.001

2022-02-00 WSC Monthly Report Exhibit H

EXHIBIT I

DISTRIBUTION DEPARTMENT ACTIVITIES - 2022

Activity	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total	Average
PA One Call Locates	423	501	523	564	481	513							3,005	501
Street Restorations	0	0	0	0	0	0							0	0
Leak Detection Assessment Percent of Distribution System	8	8	8	8	8	8							48	8
Main Break Repair - Detected Non-Surfacing	1	0	0	0	0	0							1	0
Main Breaks Repaired - Emergency	2	6	3	1	3	1							16	3
Service Line Leaks Detected	2	10	0	0	0	3							15	3
Service Line Leaks Repaired	1	11	0	0	2	2							16	3
Valves - Exercised	0	0	0	2	0	0							2	0
Valves - Replaced	0	0	0	0	0	0							0	0
Hydrant Flow Tests	0	2	3	2	5	2							14	2
Hydrants Returned to Service	0	0	1	0	1	0							2	0
Water Tap - Disconnected	1	0	2	3	4	11							21	4
Water Tap - New Connection	1	1	1	1	0	1							5	1
Water Shutoffs - Delinquent Accounts	0	0	0	0	0	0							0	0
Water Shutoffs - Other	26	23	14	47	31	60							201	34
Water Shutoffs - Non Payment	0	0	0	37	31	41							109	18
Water Restoration Turn on Other	22	24	22	36	52	39							195	33
Water Turn on - Non Payment	5	6	5	24	14	22							76	13

EXHIBIT J

Metering Activities - 2022

Board Monthly Report	Distribution Monthly Report														
Activity	Activity	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total	Average
Meter Installations															
	Missing	7	8	3	4	6	13							41	7
	Leaking	7	1	3	1	4	1							17	3
Replacement	Frozen	10	6	6	5	1	0							28	5
	Non-registering	1	3	5	5	2	4							20	3
	Large Meters ¹	0	0	0	1	1	0							2	0
New Service	New Installation	0	1	1	1	0	1							4	1
Meter Service															
MXU's Replaced	MXU's Replaced	20	22	41	18	31	24							156	26
Batteries Replaced	Batteries Replaced	67	25	123	65	48	34							362	60
Meter Pits Serviced	Meter Pits Serviced	1	0	0	1	1	1							4	1
Meter Calibrations															
Small Meters ²	Calibrated meters	2	0	1	2	11	9							25	4

¹ Large Meters are Meters 3" or greater that are calibrated at the customer's location by a contracted calibration service, assisted and witnessed by CRW staff

² Small Meters are Meters 2" or less that are calibrated at the Water Services Center by CRW staff on a certified calibration stand

EXHIBIT K

Miscellaneous Water Usage (gals) - 2022

Category of Water Use	Description	Jan	Feb	Mar	APR	May	Jun	Jul	Aug	Sept	Oct	Nov	Dec	Total	Average
Process Water	Process Water	N/A	N/A	N/A	N/A	N/A	N/A							0	N/A
Billed Metered Exported	Bulk Water Hauling	N/A	N/A	N/A	N/A	N/A	N/A							0	N/A
Billed Metered	Hydrant Connections	0	0	0	8,176	359,716	81,274							449,166	74,861
Billed Unmetered	Hydrant Flow Tests	0	7,955	11,526	3,812	11,792	13,039							48,124	8,021
Unbilled Unmetered	Hydrant Flushing (and Unbilled Authorized)	221,167	32,288	120,010	3,485,233	5,695,883	6,663,397							16,217,978	2,702,996
Leakage on Distribution Mains	Main Leaks	4,349,565	1,286,902	2,856,325	71,360	896,734	88,843							9,549,729	1,591,622
Leakage on Service Lines	Service Leaks	998,776	708,950	595,243	573,408	111,040	466,560							3,453,977	575,663
	Total	5,569,508	2,036,095	3,583,104	4,141,989	7,075,165	7,313,113							29,718,974	4,953,162

Wastewater

WASTEWATER DEPARTMENT MONTHLY REPORT

Retirement of Randy Schaffer after 33 Years of Service.

June 2022

1662 South Cameron Street, Harrisburg, PA 17104 | 888-510-0606 capitalregionwater.com

AWTF Monthly Report

June 2022

Overview

The Wastewater department continued its focus of staffing in June. Randy Schaffer, our Pretreatment Coordinator and Lab Supervisor, retired after more than 33 years of service to Harrisburg and the surrounding communities. Lab Technician Brian Hart was promoted to fill the void and is getting up to speed very quickly. A new Laborer was hired in the Maintenance group. Recruitment also continued with Operator and Laborer positions in the Plant Operations group and continues for the Electrician position. Interviews for the vacant Lab Technician position to replace Brain Hart is getting underway.

The flow maximization software program at the Front Street Pumping Station has been placed into service. There was one rain event in June that activated the program. It responded as intended, but several adjustments were made, and will continue to be made after each future event.

Seeding of Primary Digester No. 1 was delayed in June by the failed mixer gearbox on Digester No. 2. However, staff has proceeded with seeding process Digester No. 1 in July, and it is currently progressing as intended. So far, all equipment is performing as designed.

The "Food Slurry as Supplemental Carbon Source" pilot program was back in full swing and generating additional nitrogen credits that can be sold for significant non-rate revenue. Management staff is currently projecting to have approximately 100,000 credits available for sale for the 2022 Water Year, which ends on September 30th. CRW is currently in discussion with potential buyers.

Operations

During the month of June, the AWTF met all monthly average NPDES permit requirements. Three Dry Weather Overflows were reported.

Hydraulic loading to the AWTF averaged 19.4 million gallons per day (MGD). The treatment process achieved removal reductions of 97.1 percent CBOD, 98.0 percent Suspended Solids, 57.1 percent Phosphorus, and 95.9 percent Ammonia (Exhibit A).

Revenue of the Contract Waste Hauling program collected \$29,436.39 in revenue from 898,470 gallons discharged (Exhibit G). Revenue was lower due to low volumes of landfill leachate being offloaded.

AWTF Monthly Report

June 2022

The Cogeneration Facility experienced an average run time of 23 percent in June. Revenue is estimated at \$1,789.34 on 15,300 Kilowatt-hours generated for the month. The decrease in runtime is primarily due to the mechanical failures of the 38-year-old Enginator unit.

Laboratory

- Refined existing procedures with NPDES testing, along with making a schedule for Biosolids, Priority Pollutant, and Local Limits testing.
- Purging laboratory files that are well past their retention requirements.
- Digitizing templates and forms for less paper consumption.
- Started updating all testing method SOPs to the 23rd Edition of Standard Methods.

Pretreatment

- Sending report templates to Document Specialist to digitize for an easy-to-use way to keep data
 up to date and file in an organized manner.
- Digitizing Industrial Use forms with Excel for better data management.
- Learning and studying about the pretreatment processes for each industrial user.
- Purging Pretreatment Program files that are well past their retention requirements.

Plant Maintenance

- Replaced 2-inch yard hydrant on the east side of Final Clarifier Tank.
- Removed remote gate access devices for the north and south entrances of the facility following the final completion of the Salto Security Access System installation.
- Excavated yard hydrant for replacement on the west side of Primary Clarifier No. 4.
- Installed new UPS battery backups in the Maintenance building, thickeners, and Pista Grit locations.
- Continued installation of Gorman Rupp Pump No. 3 in the Plant Drain Pump Station.
- Installed new pump control system and wet well level transducer in the Plant Drain Pump Station.
- Repaired 4-inch copper heating line to heat exchangers in the Primary Digester.
- Continued equipment replacement for grit convenience system in Primary Clarifier Tank No. 3.
- Assembled new drives in Primary Clarifier Tank No. 4.
- Continued repairs to the sewage pump air relief valves and pump control systems at the Spring Creek Pump Station.
- Installed rebuilt lift cylinder on the truck crane.
- Performed 15 vehicular repairs in preparation for state inspections.
- Serviced A/C units on several trucks.
- Responded to work requests as needed at the NFS Office.

June 2022

Field Construction

- Repaired six inlets in various locations throughout the city.
- Worked on completing all work capable of being done in-house for the first phase of the CDM Smith regulator modifications. This included chaining open selected B&B gates and raising weirs for the Hemlock Street interceptor. Maintenance was also done on the flapper gates and flood gates to try and prevent backflow from Paxton Creek.

Field Operations

- A total of 3,430 feet (0.65 miles) of sewer pipe were assessed by CCTV footage throughout the month. Phase 6 CCTV has started but information is not available yet.
- A total of 831 feet (0.16 miles) of pipe were flushed during the month.
- Responded to 18 backup and overflow calls from residents. CRW was liable for none.
- Responded to 12 sinkhole calls. Wastewater was liable for none, and Drinking Water was liable for none.
- Cleaned 209 stormwater inlets.
- Inspected 202 stormwater inlets.
- There were three dry weather overflows: one at CSO #039 S. Mulberry and Cameron Streets, one at CSO #017 Front and Market Streets, and one at CSO #024 Hill Chamber T.R.W..
- There were no SSO's this month.
- Washed walls and floors of wet well and bar screen at the Front Street Pump Station.
- Added Joe Moore and Kevin Martin as the tenth crew members to the Field Operations Staff.
- Completed one CSO semi-annual PM at CSO #048.
- Scott Rotolo and Brandon Harris completed recertification of MACP, LACP, and PACP.

Environmental Compliance

- Completed four inspections of Fats Oils and Grease (FOG) dischargers. Four locations received letters of non-compliance with compliance plans.
- Issued two permit renewals.
- Issued three FOG-related Notice of Violations (NOVs).
- Two investigations were conducted during the month of June:
 - A CSO at South Mulberry and Cameron Streets recorded two dry-weather overflows in less than 30 days with very limited upstream contributors. The investigation was inconclusive, but likely caused by downstream blockages on the discharge side of the CSO leading to the Paxton Creek interceptor. That line was flushed multiple times from both directions and has had no issues since.

AWTF Monthly Report

June 2022

- While investigating the cause of dry-weather overflows at CSO-#039 (South Mulberry and Cameron Streets), it was discovered SWOUT-000035 was discharging to the Paxton Creek with no recorded rainfall for more than 72 hours. It was determined the source of the flow was groundwater entering the system through defects in SWP-007616.
- FOG-related inspections/operations were suspended due to temporary reallocation of staff.

Street Sweeping

- Received no complaints this month.
- Completed 475 miles of street sweeping within the City of Harrisburg in June.
- Continued to sweep area of Reservoir Park. It will be included in Areas 1, 6, and 9.
- Water usage was approximately 11,000 gallons.
- Continued to assist cleaning storm inlets in scheduled sweeping areas.
- When the days of the month fall on a 5th week, there is no scheduled sweeping. However, the
 Street Sweeping group will be assigned specific assignments throughout the city to continue the
 upkeep in highly visible areas. At the end of June, the Street Sweeping group swept an additional
 18 miles (included in total miles swept) and continued to clean off storm inlets.

Wastewater Exhibits

EXHIBIT A

CAPITAL REGION WATER ADVANCED WASTEWATER TREATMENT FACILITY

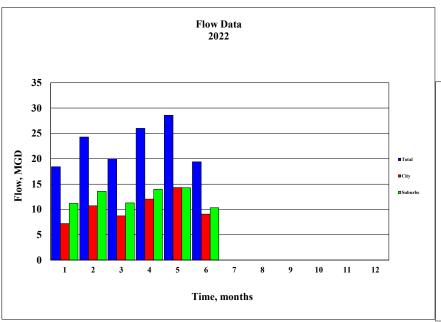
Process Control - 2022

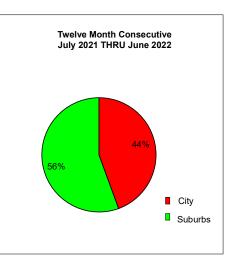
Parameters	January	February	March	April	May	June	July	August September October November Decem	ıber Average	NPDES Limits
Volume, MGD	18.4	24.3	20.3	26.0	28.6	19.4			22.8	37.7
Carbonaceous Biochemical Oxygen Demand										
Influent, mg/L	176		163	121	128	138			143	
Effluent, mg/L	3		3	3	3	4			3	25
Percent Removal, %	98.1 520	93.3 846	97.9 572	97.0 724	95.9 955	97.1 637			96.6 709	7.000
Effluent Loading, lb/d	520	040	5/2	724	955	037			709	7,860
Suspended Solids:										
Influent, mg/L	177	149	212	144	139	153			162	
Effluent, mg/L	4	4	3	2	3	3			3	30
Percent Removal, %	97.5	92.4	98.6	98.3	96.7	98.0			96.9	
Effluent Loading, lb/d	715	1,397	499	569	907	650			790	9,433
Nitrogen										
Total-N										
Influent, mg/L	26	24	26	20	21	N/A			23	
Effluent, mg/L	3.1	4.3	5	5.0	5.9	4.5			5	Monitor
Percent Removal, %	88.0	82.2	80	75.1	71.5	N/A			79.4	
Effluent Loading, lb/d	469	719	778	996	1,170	705			806	
NH3-N										
Influent mg/L	16		15	11	10	15			13	
Effluent, mg/L	0.7		2.3	0.7	1.7	0.6			1	11 (2)
Percent Removal, %	95.5		84.4	93.8	83.2	95.9			89.7	
Effluent Loading, lb/d	113	386	411	157	323	99			248	4,716
Phosphorus:										
Influent, mg/L	3.5		3.6	2.9	2.9	3.5			3.2	
Effluent, mg/L	0.9		1.6	1.1	1.1	1.5			1.2	2.0
Percent Removal, %	71.6	63.4	53.6	63.1	62.2	57.1			61.8	
Effluent Loading, lb/d	144	206	274	220	239	240			221	629
pH:										
Influent, Std. Units	7.4		7.3	7.3	7.2	7.3			7.3	
Effluent, Std. Units	7.0	6.7	7.0	6.9	7.0	7.0			6.9	6.0 - 9.0
Dissolved Oxygen:										
Effluent Minimum, mg/L	7.0	7.7	7.1	7.0	7.2	6.3			7.1	5.0 Min.
Fecal Coliform:										
Effluent, No./100 ml	6	6	1	4	2	3			4	200/100 ml (1)
Chlorine Residual:										
Effluent, mg/L	0.19	0.20	0.19	0.21	0.41	0.36			0.26	0.50

⁽¹⁾ Seasonal limit 2,000/100 ml Oct. 1 to Apr. 30 $\,$ and 200/100 ml May 1 to Sept. 30.

PROCESS2022-A

⁽²⁾ Seasonal Limit May 1 to Nov.1.




EXHIBIT B

CAPITAL REGION WATER ADVANCED WASTEWATER TREATMENT FACILITY

Flow Monitoring Information, MGD - 2022

	Total				C	ity Region	c			Su	burb Regi	ons		Total Precip
Month	Flow	City	Suburbs	1	2	3	4	5	6	7	8	9	10	inches
January February March April May June July August September October November	18.400 24.300 20.000 26.000 28.600 19.400	7.202 10.705 8.710 12.031 14.310 9.085	11.198 13.595 11.290 13.969 14.290 10.315	6.361 9.854 7.388 10.089 11.442 7.097	0.158 0.197 0.170 0.211 0.246 0.162	0.300 0.300 0.300 0.300 0.300 0.300	0.254 0.066 0.679 1.225 2.099 1.275	0.129 0.288 0.173 0.206 0.223 0.251	1.300 1.300 1.300 1.500 1.800 1.400	4.217 5.146 3.948 4.869 4.578 3.274	1.820 2.271 1.956 2.421 2.830 1.863	3.532 4.350 3.697 4.766 4.666 3.330	0.329 0.528 0.389 0.413 0.416 0.448	2.170 2.800 2.540 3.430 6.030 4.170
Average Percent	22.78 100.00	10.34 45.39	12.44 54.61											3.52 21.14

FLOW2022 No Zeros-B

EXHIBIT C

CAPITAL REGION WATER ADVANCED WASTEWATER TREATMENT FACILITY

Treatment Utility and Chemical Usage - 2022

Utility / Chemical	January	February	March	April	May	June	July	August	September	October	November December	Average	Total
Electric													
Total, kwH	1,131,900	1,032,600	1,019,700	1,072,500	969,300	*						871,000	5,226,000
Average, kwH/Day	36,513	36,879	32,894	35,750	31,268	*						34,661	
Cost, Dollars	\$70,491.63	\$72,766.82	\$64,633.22	\$70,097.82	\$65,581.40	*						\$57,261.82	\$343,570.89
Natural Gas													
Total, Cu Ft	905.6	647.3	401.4	292.5	32.4	*						380	2,279
Average, Cu Ft/Day	29	23	13	10	1	*						15	
Cost, Dollars	\$7,509.60	\$5,404.37	\$3,544.64	\$2,689.99	\$413.51	*						\$3,260.35	\$19,562.11
Water													
Total, Gal.	681,000	871,833	743,167	1,166,000	1,126,000	*						917,600	4,588,000
Average, Gal./Day	21,968	31,137	23,973	38,867	36,323	*						30,453	
Cost, Dollars	\$10,384.54	\$12,357.75	\$11,027.35	\$15,399.44	\$14,282.72	*						\$10,575.30	\$63,451.80
MicroC													
Total, Gal.	0	0	0	0	0	0						0	0
Average, Gal./Day	0.0	0.0	0.0	0.0	0.0	0.0						0	
Cost, Dollars	\$0	\$0.00	\$0	\$0	\$0	\$0						\$0.00	\$0.00
Sodium Hydroxide													
Total, Gal.	0	0	0	0	0	0						0	0
Average, Gal./Day	0	0	0	0	0	0						0	
Cost, Dollars	0	0	0	0	0	0						\$0.00	\$0.00
Chlorine Disinfection													
Total, Lbs.	5,340	6,020	5,100	7,150	8,720	7,955						6,714	40,285
Average, Lbs./Day	172	215	165	238	281	265						223	
Avg Residual, mg/L	0.19	0.20	0.19	0.21	0.41	0.41						0.27	
Cost, \$/Lbs.	\$0.99	\$0.99	\$0.99	\$0.99	\$0.99	\$0.99						\$0.99	#20.002.15
Total Cost, Dollars	\$5,286.60	\$5,959.80	\$5,049.00	\$7,078.50	\$8,632.80	\$7,875.45						\$6,647.03	\$39,882.15
Phosphorous Removal													
Total FeCl3, Gals.	507	1,333	1,634	2,743	2,417	2,675						1,885	11,309
Avg FeCl3, Gals./Day	16	48	53	91	78	89						63	
FeCl3 Cost, \$/Gal.	\$1.26	\$1.26	\$1.26	\$1.26	\$1.26	\$1.26						\$1.26	
FeCl3 Total Cost, Dollars	\$638.82	\$1,679.58	\$2,058.84	\$3,456.18	\$3,045.42	\$3,370.00						\$2,374.81	\$14,248.84

^{*} No data at time of report

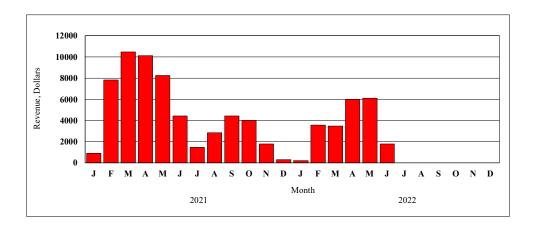


EXHIBIT D

CAPITAL REGION WATER ADVANCED WASTEWATER TREATMENT FACILITY

Cogeneration Electrical Production: 2021-2022

	Percent	Daily Avg	Kilowatt Hours	Estimated	
Period	Run Time	Kilowatt	Produced	Revenue	
January 2021	12	377	11,700	\$901.25	
February 2021	75	3,632	101,700	\$7,833.95	
March 2021	84	4,384	135,900	\$10,468.38	
April 2021	77	4,380	131,400	\$10,121.74	
May 2021	79	3,454	107,100	\$8,249.91	
June 2021	42	1,920	57,600	\$4,436.93	
July 2021	8	406	12,600	\$1,473.57	
August 2021	26	784	24,300	\$2,841.89	
September 2021	27	1,260	37,800	\$4,420.71	
October 2021	26	1,103	34,200	\$3,999.69	
November 2021	12	510	15,300	\$1,789.34	
December 2021	2	87	2,700	\$315.77	
				_	
Total - 2021			672,300	\$56,853.12	
Monthly Average - 2021	39	1,858	56,025	\$4,737.76	
January 2022	2	58	1,800	\$210.51	
February 2022	37	1,093	30,600	\$3,578.67	
March 2022	33	958	29,700	\$3,473.42	
April 2022	43	1,710	51,300	\$5,999.54	
May 2022	53	1,687	52,200	\$6,104.79	
June 2022	23	510	15,300	\$1,789.34	
July 2022					
August 2022					
September 2022					
October 2022					
November 2022					
December 2022					
Total - 2022			180,900	\$21,156.26	
Monthly Average - 2022	32	1,003	30,150	\$3,526.04	

COGEN2022-D 10

EXHIBIT E

CAPITAL REGION WATER ADVANCED WASTEWATER TREATMENT FACILITY

Sludge Handling Information - 2022

Process	January	February	March	April	May	June	July	August	September	October	November	December	Average	Total
Solids Removal														
Process, Lbs.	836,796	808,604	1,256,456	1,295,249	1,041,739	1,063,962							1,050,468	6,302,807
CWH Program, Lbs.	69,353	76,120	124,956	61,652	122,100	72,880							87,843	527,061
Total Solids, Lbs.	906,149	884,724	1,381,413	1,356,901	1,163,839	1,136,842							1,138,311	6,829,868
Sludge Dewatering														
Feed Volume, Gals.	3,577,000	2,678,000	4,535,000	5,007,000	4,782,000	6,279,000							4,476,333	26,858,000
Feed Solids, %	1.7	1.7	2.0	1.8	2.0	1.4							1.8	-
Labor, Hours	459	416	659	644	561	659							566	3,398
Operations, Hours	930	785	1,132	1,058	962	1,181							1,008	6,047
Total Cake, Dry Tons	179	167	312	295	281	279							252	1,513
Total Cake, Wet Tons	1,149	1,069	1,855	1,682	1,533	1,570							1,476	8,858
Cake TS, %	15.5	15.6	16.8	17.6	18.4	17.8							17.0	-
Press Rate, Lbs./Hour	2,472	2,725	3,279	3,179	3,186	2,659							2,917	17,500
Polymer Dosage, Lbs	3,188	2,976	4,605	5,056	4,545	5,358							4,288	25,728
Polymer Dosage, Lbs/Dry Ton	20.4	19.4	15.1	17.5	16.9	19.2							18.1	-
Disposal Cost														
Labor, Dollars	\$8,821.98	\$7,995.52	\$12,665.98	\$12,383.45	\$10,778.58	\$12,665.98							\$10,885.25	\$65,311.48
Electrical,Dollars	\$409.07	\$345.18	\$497.86	\$465.56	\$423.37	\$519.64							\$443.45	\$2,660.68
Polymer, Dollars	\$6,216.60	\$5,803.20	\$8,979.75	\$9,859.20	\$8,862.75	\$10,448.10							\$8,361.60	\$50,169.60
Disposal, Dollars	\$27,763.12	\$91,664.12	\$107,614.33	\$87,453.98	\$89,783.89	\$85,636.00							\$81,652.57	\$489,915.45
Total Cost, Dollars	\$43,210.77	\$105,808.02	\$129,757.92	\$110,162.19	\$109,848.58	\$109,269.72							\$101,342.87	\$608,057.21
Cost Per Dry Ton, Dollars	\$241.40	\$633.58	\$415.89	\$373.43	\$390.92	\$391.65							\$407.81	

SLUDGE2022-E

CAPITAL REGION WATER ADVANCED WASTEWATER TREATMENT FACILITY

Conveyance Utility Usage - 2022

Location / Utility	January	February	March	April	May	June	July	August	September	October	November December	Average	Total
Front Street Pump Station													
Electric													
Total, kwH	232,800	219,600	187,200	187,200	190,800	93,600						185,200	1,111,200
Average, kwH/Day	7,510	7,843	6,039	6,240	6,155	3,120						6,151	
Cost, Dollars	#######	\$14,468.72	\$10,417.84	\$12,381.18	\$13,421.18	\$5,141.58						\$11,785.60	\$70,713.62
Fuel Oil													
Total, Gals.	0	0	0	0	0	0						0	0
Average, Gals./Day	0	0	0	0	0	0						0	
Cost, Dollars	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00						0	\$0.00
Water													
Total, Gals.	315,000	180,833	479,167	261,819	397,181	*						326,800	1,634,000
Average, Gal./Day	10,161	6,458	15,457	8,727	12,812	*						10,723	
Cost, Dollars	\$3,953.62	\$2,566.33	\$5,651.11	\$3,403.73	\$4,803.37	*							\$20,378.16
Spring Creek Pump Station													
Electric													
Total, kwH	36,160	52,160	55,040	85,120	96,960	79,360						67,467	404,800
Average, kwH/Day	1,166	1,863	1,775	2,837	3,128	2,645						2,236	
Cost, Dollars	\$2,617.50	\$3,866.14	\$3,752.30	\$6,514.96	\$7,873.63	\$6,791.79						\$5,236.05	\$31,416.32
Fuel Oil													
Total, Gals.	0	0	0	0	0	0						0	0
Average, Gals./Day	0	0	0	0	0	0						0	
Cost, Dollars	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00						\$0.00	\$0.00
Water													
Total, Gals.	25,000	39,000	106,000	79,333	224,667	*						94,800	474,000
Average, Gal./Day	806	1,393	3,419	2,644	7,247	*						3,102	
Cost, Dollars	\$334.49	\$479.25	\$1,172.03	\$896.29	\$2,399.05	*						\$1,056.22	\$5,281.11
Market Street Pump Station													
Electric													
Total, kwH	1,200	1,200	1,080	960	1,080	840						1,060	6,360
Average, kwH/Day	39	43	35	32	35	28						35	
Cost,Dollars	\$207.27	\$123.51	\$121.40	\$237.38	\$146.40	\$66.71						\$150.45	\$902.67
Fuel Oil													
Total, Gals.	0	0	0	0	0	0						0	0
Average, Gals./Day	0	0	0	0	0	0						0	
Cost, Dollars	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00	\$0.00						\$0.00	\$0.00
City Island Pump Station													
Electric													
Total, kwH	40	40	40	40	40	40						40	240
Average, kwH/Day	1	1	1	1	1	1						1	
Cost, Dollars	\$63.36	\$54.75	\$61.50	\$63.19	\$56.52	\$53.56						\$58.81	\$352.88

^{*} No Data at time of report

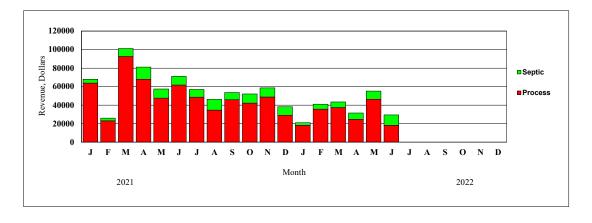


EXHIBIT G

CAPITAL REGION WATER ADVANCED WASTEWATER TREATMENT FACILITY

Contract Waste Hauling Program 2021 - 2022

	Process				Total	
Month	Gallons	Revenue	Gallons	Revenue	Gallons	Revenue
January	2,207,599	\$63,748.15	118,100	\$4,255.20	119,200	\$68,003.35
February	765,460	\$23,088.42	81,060	\$2,864.16	846,520	\$25,952.58
March	3,321,165	\$92,510.78	239,250	\$8,559.00	3,560,415	\$101,069.78
April	2,345,220	\$67,928.04	366,960	\$13,093.56	2,712,180	\$81,021.60
May	1,571,220	\$47,547.72	278,050	\$9,883.80	1,489,270	\$57,431.52
June	2,116,390	\$61,668.09	265,920	\$9,380.70	2,382,340	\$71,048.79
July	1,683,380	\$48,625.56	233,900	\$8,366.40	1,917,280	\$56,991.96
August	1,157,030	\$34,517.61	327,260	\$11,655.36	1,484,290	\$46,172.97
September	1,591,020	\$45,863.64	220,840	\$7,779.24	1,811,860	\$53,642.88
October	1,495,740	\$42,324.00	273,850	\$9,786.60	1,769,590	\$52,110.90
November	1,667,580	\$48,803.22	277,250	\$9,864.00	1,944,830	\$58,667.22
December	988,550	\$29,082.69	253,150	\$9,041.40	1,241,700	\$38,124.09
Total - 2021 Monthly Average - 2021	20,910,354 1,742,530	\$605,707.92 \$50,475.66	2,935,590 244,633	\$104,529.42 \$8,710.79	21,279,475 1,773,290	\$710,237.64 \$59,186.47
January	557,788	\$18,254.25	78,450	\$2,770.20	636,238	\$21,024.45
February	1,253,749	\$35,714.94	150,975	\$5,336.00	1,404,724	\$41,051.04
March	1,266,410	\$37,456.11	168,400	\$5,918.40	1,434,810	\$43,374.51
April	832,860	\$24,607.44	189,750	\$6,795.00	1,022,610	\$31,402.44
May	1,599,990	\$46,377.27	250,650	\$8,874.90	1,850,640	\$55,252.17
June	583,370	\$18,218.79	315,100	\$11,217.60	898,470	\$29,436.39
July						
August						
September October						
November						
December						
הפרבוווחבו –						
Total - 2022	6,094,167	\$180,628.80	1,153,325	\$40,912.10	7,247,492	\$221,541.00
Monthly Average - 2022	1,015,695	\$30,104.80	192,221	\$6,818.68	1,207,915	\$36,923.50

CWH2022-G 13